Advanced Algorithm

Jialin Zhang
zhangjialin@ict.ac.cn
Institute of Computing Technology, Chinese Academy of Sciences

April 4, 2019

Lecture 3: Balls and Bins (continue)

Balls and Bins

(1) $m=o(\sqrt{n}): k=1$ w.h.p;
(2) $m=\Theta(\sqrt{n})$ (Birthday Paradox): $k=1$ or 2 w.h.p;
(3) $m=n: k=\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p;
(9) $m \geq n \ln n$: ?

Balls and Bins

(1) $m=o(\sqrt{n}): k=1$ w.h.p;
(2) $m=\Theta(\sqrt{n})$ (Birthday Paradox): $k=1$ or 2 w.h.p;
(3) $m=n: k=\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p;
(9) $m \geq n \ln n: k=\Theta\left(\frac{m}{n}\right)$ w.h.p.

Coupon Collector's Problem

- Randomized Algorithm - Chapter 3.6 (P57)
- Find m, such that $\operatorname{Pr}\left(\min \left(X_{1}, \cdots, X_{n}\right) \geq 1\right)=1-o(1)$.

Key Points

- Markov Inequality
- Chebyshev's Inequality
- Chernoff's Bound
- $E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)$, no condition
- Union Bound:
$\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\cdots+\operatorname{Pr}\left(A_{n}\right)$, no condition

Lecture 4: Principle of Deferred Decisions

Principle of Deferred Decisions

- Ref: Randomized Algorithm - Chapter 3.5
- Poke game: Clock Solitaire
- Seating problem in the airplane
- Stable Marriage Problem

Stable Marriage Problem

- "Men Propose" Algorithm
- "Deferred Acceptance with Compensation Chains" by Piotr Dworczak, EC 2016

Homework

(1) In the coupon collector's problem, let T_{i} be the first step that there are exactly i non-empty boxes and let $T_{0}=0$. Let $Z_{i}=T_{i}-T_{i-1}$. We compute the expectation of Z_{i} in the class. In the homework, please compute the variance of Z_{i}.
(2) Consider the case with n balls and n bins, let X be the random variable of the number of empty bins. Compute $E(X)$.
(3) Estimate the deviation between X and $E(X)$ in the previous question. Your result should be in the form $\operatorname{Pr}(|X-E(X)|>a)<b$.
(9) Reference: Randomized Algorithm, chapter 4.4

